(Poster Number)
T3325

Spectrophotometric pK_a Determination of Ionizable Pharmaceuticals: Resolution of Molecules with Weak pH-Dependent Spectral Shift

Pion

Deren Dohoda¹, Konstantin Tsinman¹, Oksana Tsinman¹, Dave Kwajewski¹, Kin Y. Tam²

¹Pion Inc., 10 Cook Street, Billerica, MA01821, USA, ²Faculty of Health Sciences, University Macau, Taipa, Macau, China

PURPOSE

Introduction

- •The extent of ionization of a drug molecule at different pH values can be characterized by its pK_a (acid dissociation constants).
- •pK_a is an important parameter to rationalize the distribution behaviors of the molecule at different in vivo environments.
- •UV titration for pK_a determination has become one of the popular methods but the success of this method requires the molecule exhibiting strong pH-dependent spectral shift that related to the ionization process. Depending on the proximity between the ionizable group and the chromophore, the spectral shift may not be strong enough to warrant a successful determination.
- •In this work we investigate a UV titration method for pK_a determination, with a particular emphasis on molecules with weak pH-dependent spectral shift.

Experimental

- UV spectra during a titration experiment with compound concentration of about 1μM were collected by using a newly developed automated potentiometric optical system (PULSE, Pion Inc., see Figure 1).
- •All experiments were carried out in 0.15M KCl solution at 25 ± 0.5 °C.

Data analysis

- •The spectral data in the form of a data matrix was subjected to principal component analysis (PCA) to determine the number of independent light absorbing species, which aids the establishment of an ionization model.
- •Alternative least square (ALS) method² that we previously used to calculate the tautomer ratios of zwitterionic compounds was adopted for the determination of the unknown pK_a values from the spectra data.³

Figure 1. Pion Pulse TM automated potentiometric - optical system

RESULTS

Samples were selected based on the optical properties and the distance between the ionizable group and the chromophore to exemplify the method developed in this study. Figures 2 shows some representative results from the PCA-ALS analysis

DISSCUSSION

Table 1 pK_a of the selected compounds determined using the PCA-ALS analysis.

Compound	Chromophore- ionization center distance	pK _a (s) determined by PULSE/PCA-ALS	pK _a (s) Literature	Refs.
Quinine	None, 3σ bonds	4.37, 8.57	4.37, 8.60	4
Propranolol	5 σ bonds	9.46	9.53	5
Diclofenac	3 σ bonds	4.02	3.99	5
Aniline	1 σ bond	4.68	4.61	6
Benzylamine	2 σ bonds	9.33	9.34	7
Phenylethylamine	3 σ bonds	9.84	9.83	7
3-Phenyl-1-propylamine	4 σ bonds	10.40	10.01	7
Benzoic acid	2 σ bonds	3.98	3.98	8
Phenylacetic acid	3 σ bonds	4.09	4.29	9
3-Phenylpropanoic acid	4 σ bonds	4.30	4.37	10

- Results that show in Table 1 are in good agreement with literature pK_a values.
- The PULSE system is capable of generating spectra data of very low noise level ($\sim 5 \times 10^{-4}$ a.u.), which enables an unambiguous resolution of overlapping spectra.
- We have shown that our optical system could determine the pK_a values where the distance between the chromophore and the ionization is less than 5 σ bonds.

CONCLUSIONS

We have developed a potentiometric - optical system, which is capable of collecting very clean spectral data during a UV titration experiment of an ionizable drug molecule. Data analysis procedure based on the PCA-ALS method has been implemented and has shown to be very sensitive in determining the pK_as of ionizable drug molecules even the ionizing species show very similar UV spectra. The results obtained from this novel system are found to be in good agreement with literature.

REFERENCES

- 1. K.Y Tam, F.T. Chau, Chemometr. Intell. Lab. Syst. 25 (1994) 25–42.
- J. Saurina et al., Anal. Chim. Acta 408 (2000) 135–143.
- 8. K. Takács-Novák, K.Y. Tam, J. Pharm. Biomed. Anal. 21 (2000) 1171–1182.
- A. Avdeef, STAN, Vol. 1, Sirius Analytical Instruments Ltd., Forest Row, UK, 1994.
- 5. A. Avdeef et al., Pharm. Res. 15 (1997) 208 214.
- 6. A. Avdeef, Absorption and Drug Development, 2nd Ed. Wiley, NJ, 2012, p. 49.
- G.K. Dixon et al. (eds.), High Throughput Screening: The Next Generation. Bios Scientific Publishers Ltd., Oxford, 2000, pp. 67 74.
- 8. K.Y. Tam, K. Takács-Novák, Pharm. Res. 16 (1999) 374 381.
- 9. Atta-Ur-Rahman et al. (eds.), Frontiers in Medicinal Chemistry, Volume (4). Bentham Science Publishers Ltd., 2009, p. 58.
- 10. K.K. Mittal (ed.), Acid Base Interactions: Relevance to Adhesive Science and Technology Vol. 2, VSP BV, Zeist, 2000, p. 49.